一、gps卫星定位中载波的作用?
GPS卫星中所用的载波有两个,由于它们均位于微波的L波段,故分别称为L1载波和L2载波。
卫星导航定位系统通常都采用L波段的无线电信号来作为载波,频率过低(f<1GHz)电离层延迟严重;频率过高,信号受水汽吸收和氧气吸收谐振严重,而L波段的信号则较为适中。
二、gps卫星信号采用的调制方法?
在通信原理中把通信信号按调制方式可分为调频、调相和调幅三种。数字传输的常用调制方式主要分为:
正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。
键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。
残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。
编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。
世广数字卫星广播系统的下行载波的调制技术采用TDM QPSK调制体制。它比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。
三、gps卫星发展
GPS卫星的发展历程
GPS卫星作为全球定位系统的重要组成部分,其发展历程也见证了科技的不断进步。以下是对GPS卫星发展历程的简要概述:早期的GPS卫星主要服务于军事和科研领域。它们是在冷战期间由美国和苏联分别发展出来的,主要目的是实现全球定位和军事侦察。这些卫星的特点是轨道高度高、信号强度强、定位精度高,但由于卫星数量有限,使得用户设备相对昂贵,同时卫星覆盖范围较小。
随着时间的推移,GPS系统逐步进入了民用领域。随着科技的不断发展,人们逐渐实现了将更多的卫星送入轨道,并提高了卫星的定位精度和覆盖范围。这些卫星的特点是轨道高度较低、信号强度适中、定位精度高且稳定。同时,随着GPS接收器的普及,人们开始广泛应用GPS技术进行导航、测量、土地管理等任务。 现在,全球定位系统已经成为人们日常生活和工作中不可或缺的一部分。从个人用户的导航到公共交通的调度,再到科研领域的实验观测,GPS卫星都发挥着重要作用。为了进一步提高定位精度和稳定性,人们还在不断探索新的技术手段,如增强型GPS、差分GPS等。总的来说,GPS卫星的发展历程见证了科技的不断进步和全球定位系统的发展。未来的GPS卫星将会更加智能化、高效化和人性化,为人们提供更加精确、便捷和可靠的服务。
展望未来
随着科技的不断发展,未来GPS卫星的发展前景也十分广阔。以下是我们对未来GPS卫星发展的几点展望:首先,随着微电子技术的不断发展,未来的卫星将更加小型化和轻量化,这将有助于提高发射效率和降低发射成本。
其次,未来的卫星将更加智能化和自主化,能够更加灵活地适应各种复杂的环境和任务。这将是基于人工智能和机器学习技术的发展而来的。
最后,未来的GPS系统将更加人性化,能够更好地满足用户的不同需求。例如,通过增强型GPS和差分GPS等技术手段,进一步提高定位精度和稳定性;通过实时通信和数据共享等技术手段,为用户提供更加便捷和可靠的服务。
综上所述,未来的GPS卫星将会在更多领域发挥重要作用,为人们的生活和工作带来更多便利和价值。四、gps卫星信号采用的调制方法是?
在通信原理中把通信信号按调制方式可分为调频、调相和调幅三种。数字传输的常用调制方式主要分为:
正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。
键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。
残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。
编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。
世广数字卫星广播系统的下行载波的调制技术采用TDM QPSK调制体制。它比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。
五、载波调制解调技术?
载波是指被调制以传输信号的波形,一般为正弦波。一般要求正弦载波的频率远远高于调制信号的带宽,否则会发生混叠,使传输信号失真。 可以这样理解,我们一般需要发送的数据的频率是低频的,如果按照本身的数据的频率来传输,不利于接收和同步。使用载波传输,我们可以将数据的信号加载到载波的信号上,接收方按照载波的频率来接收数据信号,有意义的信号波的波幅与无意义的信号的波幅是不同的,将这些信号提取出来就是我们需要的数据信号。
调制是一种将信号注入载波,以此信号对载波加以调制的技术,以便将原始信号转变成适合传送的电波信号, 常用于无线电波的广播与通信、利用电话线的数据通信等各方面。 依调制信号的不同,可区分为数字调制及模拟调制,这些不同的调制,是以不同的方法,将信号和载波合成的技术。调制的逆过程叫做解调,用以解出原始的信号。
调制与解调的意义
可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且使频谱资源得到充分利用。例如,天线尺寸为信号的十分之一或更大些,信号才能有效的被辐射。对于语音信号来说,相应的天线尺寸要在几十公里以上,实际上不可能实现。这就需要调制过程将信号频谱搬移到较高的频率范围。如果不进行调制就把信号直接辐射出去,那么各电台所发出信号的频率就会相同。调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致互相干扰。这也是在同一信道中实现多路复用的基础。
六、多载波调制的种类?
多载波调制技术(Multicarrier Modulation)采用了多个载波信号。
1.
它把数据流分解为若干个子数据流,从而使子数据流具有低得多的传输比特速率,利用这些数据分别去调制若干个载波。
2.
所以,在多载波调制信道中,数据传输速率相对较低,码元周期加长,只要时延扩展与码元周期相比小于一定的比值,就不会造成码间干扰。因而多载波调制对于信道的时间弥散性不敏感。
3.
多载波调制可以通过多种技术途径来实现,如多音实现(Multitone Realization)、正交多载波调制(OFDM)、MC-CDMA和编码MCM(Coded MCM)。
其中,OFDM可以抵抗多径干扰,是当前研究的一个热点。
七、调制信号怎么加到载波上?
调制信号是通过改变正弦波的幅度、相位和频率加到载波上。
其基本原理是把数据信号寄生在载波的某个参数上:幅度、频率和相位,即用数据信号来进行幅度调制、频率调制和相位调制。
调制信号是搭载在载波信号上的。
调制分为两种;
调幅;即,载波信号的频率不变(是一个固定的频率),调制信号只是改变载波信号的幅度。接收机只是把调制信号搭载在载波信号上的那个幅度捡出来,称为“捡波”。
调频;即,载波信号的幅度不变(是一个固定的幅度),调制信号只是改变载波信号的频率。接收机只是把调制信号搭载在载波信号上的那个频率鉴别出来,称为“监频”。
调制方式有很多。
根据调制信号是模拟信号还是数字信号,分为模拟调制和数字调制。模拟调制方式有幅度调制(AM)和频率调制(FM)等。数字调制方式有振幅键控、移频键控、移相键控、正交幅度调制等,信号调制原理是研究信号调制识别问题的基础。
八、光纤的光载波调制方法?
光纤传输信号,和普通的RF传输以及其他的传输方式不同,光纤属于数字传输,传输的任何信号都要转换成为数字信号0和1,和传统的载波调试方式不同,光无法传输模拟量,也就是说,光不能传输随时间变化而变化的电信号,只能通过"通"和"断"来传输数字信号;
光纤如果需要进行多路传输,需要用到TDM(时分复用)和WDM(粗波分复用)包括(DWDM密集型波分复用),其中TDM是单波长多路复用技术的一个关键技术,TDM不仅在光纤通信领域,在众多通信领域内 都有很多的应用;
光纤通信的基本框架:(这里简单说明一下光纤通信的原理和一般应用)
1、信号处理;将信号进行前端的放大、滤波、整理等等;
2、AD采集;将前端整理过的信号送入模数转换采样输出数字并行信号;
3、逻辑处理;将多路AD输出后的数字信号进行TDM;
4、将TDM数据进行并串转换处理;
5、经过并串处理过的信号送入激光器传输;
接收端逆向即可;
九、为什么要做正弦载波调制?
可以很好的减少误码率,尤其是在密码传输部分有着非常重要的应用。正弦波的波形可以通过波长半波长正弦和反现来代替0和1的数字表达,很容易就可以通过解调过程来验证传输数据是否出错。而且调制过程非常的简单,只需要控制输出端电流频率就可以。
十、调制波和载波的区别?
调制波:信号调制,就是一个数学运算,载波是一个正弦波,它有几个参数,幅度、频率、相位。用一个携带信息的信号去改变载波的某一个或几个参数,信号就被调制到载波上。
信息波叫做调制波,载波就是一个正弦波,已调制波就不同了,它已经携带了调制信号的信息。
- 相关评论
- 我要评论
-