一、遥控接收模块原理?
遥控接收模块工作原理:
遥控接收模块部分由接收天线、输人选频回路、高频放大、超再升电路、脉冲信号放大整形电路组成。其功能是将遥控度器发出的高频载波信号进行选频、放大、解调。输出符合解码电路要求的脉宽数据信号。 由于该部分电路是控制信号进入的最前端。生产厂家为了方便与不同的机种型号配套。多数将该部分电路单独制作在一小块电路板上。人们习惯称之为接收头。
二、接收模块工作原理?
无线发射接收模块都已经进行了封装设计(集成了单片机控制和无线编码)跟单片机直接通过异步串行口连接就可以,现在市面上的无线收发模块,其无线工作方式由模块内部的单片机控制,与用户单片机的连接一般就只有电源和收、发等几根线。
无线发射模块和接收模块必需配对使用,且工作频率要完全一样,接收模块一定要根据发射局部的编码格式来配解码IC,无线收发模块都是传输数据的一个通道,接收模块接收到发射信号后通过DA TA 脚传给解码IC,让其工作。
三、GPS接收机工作原理?
GPS接收机主要由 1、GPS接收机天线单元;2、GPS接收机主机单元;3、电源三部分组成。
接收机主机由变频器、信号通道、微处理器、存贮器及显示器组成。
1.GPS接收机天线
天线由接收机天线和前置放大器两部分所组成。天线的作用是将GPS卫星信号的极微弱的电磁波能转化为相应的电流,而前置放大器则是将GPS信号电流予以放大。为便于接收机对信号进行跟踪、处理和量测,对天线部分有以下要求:
——天线与前置放大器应密封一体,以保障其正常工作,减少信号损失;
——能够接收来自任何方向的卫星信号,不产生死角;
——有防护与屏蔽多路径疚的措施;
——天线的相位中心保持高度的稳定,并与其几何中心昼一致。
GPS接收机天线有下列几种类型:
(1)单板天线
这种天线结构简单、体积较小,需要安装在一块基板上,属单频天线。
(2)四螺旋形天线
四螺旋形天线是由四条金属管线绕制而成,底部有一块金属掏板。这种天线频带寒风,全圆极化性能好,可捕捉低高度角卫星。缺点是不能进行双频接收,抗震性差,常用作导航型接收机天线。
(3)微带天线
微带天线是在厚度为h(h≤λ)的介质板两边贴以金属片。一边为金属底板,一边做成矩形或圆形等规则形状。这种天线也称为贴片天线。微带天线的特点是高度低,重轻,结构简单并且坚固,易于制造;既可用于单频机,又可用于双频机。缺点是增益较低。目前大部分测地型天线都是微带天线。这种天线更适用于飞机、火箭等高速飞行物上。
(4)锥形天线
锥形天线是在介质锥体上,利用印刷电路技术在其上制成导电圆锥螺旋表面,也称盘旋螺线型天线。这种天线可以同进出在两个频率上工作。锥形天线的特点是增益好。但是由于其天线较高,并且在水平方向上不对称,天线相位中心与几何中心不完全一致。因此,在安置天线时要仔细定向并且要给于补偿。
GPS天线接收来自20000km高空的卫星信号很弱,信号电平只有-50~-180dB;输入功率信噪比为S/N=-30dB。即信号源淹没在噪声中。为了提高信号强度,一般在天线后端设有前置放大器。对于双频接收机设有两路前置放大器以养活带宽,控制外来信号干扰,也防止f1,f2信号干扰。大部分GPS天线都与前置放大器结合在一起,但也有些导航型接收机为减少天线重量、便于安置、避免雷电事故,而将天线和前置放大器分开。
2.接收机主机
(1)变频器及中频接收放大器
经过GPS前置放大器的信号仍然很微弱,为了使接收机通道得到稳定的高增益,并且使L频段的射频信号变成低频信号,必须采用变频器。
(2)信号通道
信号通道是接收机的核心部分,GPS信号通道是硬软件结合的电路。不同类型的接收机其通道是不同的。
GPS信号通道的作用有三:搜索卫星,索引并跟踪卫星;对广播电文数据信号衽解扩,解调出广播电文;进行伪距测量、载波相位测量及多普勒频移测量。图4-10为相关通道的电路原理图。
从卫星接收到的信号是扩频的调制信号,所以要经过解扩、解调才能得到导航电文。为了达到此目的,在相关通道电路中设有伪码相位跟踪环和载波相位跟踪环。
(3)存贮器
接收机内设有存贮器或存贮卡以存贮卫星星历、卫星历书、接收机采集到的码相位伪距观测值、载波相位观测值及多普勒频移。目前,GPS接收机都装有半导体存贮器(简称内存),接收机内存数据可以通过数据口传到微机上,以便进行数据处理和数据保存。在存贮器内还装有多种工作软件,如:自测试软件;卫星预报软件;导航电文解码软件;GPS单点定位软件等。
(4)微处理器
微处理器是GPS接收机工作的灵魂,GPS接收机工作都是在微机指令统一协同下进行的。其离要工作步骤为:
①接收机开机后首先对整个接收机工作善进行自检,并测定、校正、存贮各通道的时延值。
②接收机对卫星进行搜索捕捉卫星。当捕捉到卫星后即对信号进行牵引和跟踪,并将基准信号译码得到GPS卫星星历。当同时锁定4颗卫星时,将C/A码伪距观测值连同星历一起计算测站的三维坐标,并按预置位置更新率计算新的位置。
③根据机内存贮的卫星历书和测站近似位置,计算所有在轨卫星卫星升降时间、方位和高度角。
④根据预先设置的航路点坐标和单点定位测站位置计算导航的参数航偏距、航偏角、航行速度等。
⑤接收用户输入信号,如:测站名,测站号,作业员姓名,天线高,气象参数等。
(5)显示器
GPS接收机都有液晶显示屏以提供GPS接收机工作信息。并配有一个控制键盘。用户可通过键盘控制接收机工作,对于导航接收机,有的还配有大显示屏,在屏幕上直接显示导航的信息甚至显示数字地图。
3.电源
GPS接收机电源有两种,一种为内电源,一般采用锂电池,主要用于RAM存贮器供电,以防止数据丢失。另一种为外接电源,这种电源常用可充电的12V直流镉镍电池组,或采用汽车电瓶。当用交流电时,要经过稳压电源或专用电流交换器。
综上所述,接收机的主要任务是:当GPS卫星在用户视界升起时,接收机能够捕获到按一不定期卫星高度截止角所选择的待测卫星,并能够跟踪这些卫星的运行;对所接收到的GPS信号,具有变换、放大和处理的功能,以便测量出GPS信号从卫星到接收天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。GPS信号接收机不仅需要功能较强有力的机内软件,而且需要一个多功能的GPS数据测后处理软件包。接收机加处理软件包,才是完整的GPS信号用户设备。
四、gps接收器工作原理?
1、GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
2、而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
3、GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;
4、P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。
5、它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。
6、后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。
7、当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。
五、GPS和GPS接收器的工作原理?
GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
GPS接收器定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。
六、GPS 模块怎么进行测速?
GPS模块在定位的时候,输出的数据格式里面带有速度的项。
七、用锡纸包住gps接收模块天线能屏蔽gps信号吗?
能,GPS的信号很弱的,在天线表面用金属挡住就可以屏蔽GPS信号
八、gps接收器工作原理全面介绍?
1、GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
2、而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
3、GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;
4、P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。
5、它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。
6、后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。
7、当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。
九、gps模块与单片机接口原理?
GPS模块与单片机的接口原理如下:
1. 选择合适的GPS模块:首先需要选择与单片机兼容的GPS模块,通常使用串行通信接口(如UART)进行通信。确保选取的GPS模块支持单片机所使用的通信协议和电压级别。
2. 连接硬件:将GPS模块与单片机进行物理连接。通常需要连接以下几个信号线:
- 电源线:将GPS模块的电源引脚连接到单片机的适当电源引脚,确保电源电压和电流符合要求。
- 地线:将GPS模块的地线引脚连接到单片机的地线引脚,确保电路共地。
- 串行通信线:将GPS模块的串行通信引脚(如TX和RX)连接到单片机的对应串口引脚。
3. 配置单片机串口:在单片机上设置串口参数,例如波特率、数据位、停止位和校验位等,以与GPS模块的通信参数相匹配。
4. 通信协议:根据GPS模块的规格说明,了解它的通信协议。通常使用的是NMEA协议,通过串口发送和接收GPS定位数据。
5. 串口通信:通过单片机的串口,向GPS模块发送请求命令,以获取定位数据。可以使用单片机的串口发送函数和接收函数来发送和接收数据。
6. 解析数据:从GPS模块接收到的数据是原始的NMEA格式数据,需要进行解析和处理,以提取有用的定位信息,如经度、纬度、海拔高度等。
7. 数据处理:根据需要,可以使用单片机的计算和逻辑功能对接收到的GPS数据进行进一步的处理和应用,例如在显示屏上显示定位信息或进行导航算法等。
需要注意的是,确保单片机和GPS模块之间的电气特性和信号兼容性,以避免电平不匹配和通信错误。在连接和操作过程中,还需要根据具体的单片机型号和GPS模块规格书参考相关文档和资料。
十、这个接收模块怎么接电源?
VDD 看说明书,需要几V接几V,
GND接地,一般就是接在其他控制板的GND上。
- 相关评论
- 我要评论
-