一、gps测速原理及方法?
GPS测量法适用于各种滑坡不同变形阶段的三维位移监测。GPS测量不受气候条件限制,可进行全天侯监测;观测点之间无需通视,选点方便;可同时进行平面位移与垂直位移监测;自从动数化据。采集、数据处理到分析、管理的全过程易;需如要果大监量测的点G数PS量多、且要全部进行长期自动化监备、微机等安装在野外无人值守的监测房内,安全难以得到保障。
在GPS 测量中,卫星主要被作为位置已知的空间观测目标,从而形成了不需要地面点的后方交会, 每台接收机都是一个独立的控制点,经过接受到的数据解算出点的经纬坐标(WGS-84),在多台接收机同时接收数据便形成了很多三角网形参与平差解算, 自由网无约束平差解算出WGS-84 坐标, 然后把己知的控制点进行约束平差得到BJ-54坐标。
考虑到测区的实际情况,选多于4 台GPS 接收机为一套设备,以两台仪器为一组,成对布设GPS 点。在组成良好网形的前提下,每一对GPS 点必须通视良好,其间距一般500 米左右,以便于以后作为全站仪导线点的起始点。
GPS联测和高等级导线采用软件平差解算。在做较长距离导线时就会产生投影变形, 投影变形处理与否将直接影响整个控制网精度是否达到要求。
二、gps定位原理及解释?
GPS实施的是“到达时间差”(时延)的概念:利用每一颗GPS卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。
GPS卫星在空中连续发送带有时间和位置信息的无线电信号,供GPS接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。
卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。
三、gps测量原理及操作?
GNSS的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。
要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
PS:实际GNSS测量工作原理参照华测导航的GNSS大地测量产品的相关应用。
四、gps工作原理简单介绍?
GPS的工作原理:
GPS导航系统的工作原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;
P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。
它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。
后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。
当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标
五、GPS实训原理及步骤?
GPS的原理是:天空上多个卫星同时发送信号,地面的接收装置与各卫星的距离不一样,到达的时间当然就不一样,利用时间差来计算出接收机的经纬度。GPS全球卫星定位系统由三部分组成:空间部分———GPS星座;地面控制部分———地面监控系统;用户设备部分———GPS 信号接收机。
GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成。主控站根据各监测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。
GPS用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。
六、gps测量原理及测量方法?
gps是通过接收卫星信号通过解算软件获得所测点的坐标。
测量方法分为静态gps和RTK获得。
七、vdr的介绍及原理?
VDR是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件。英文名称叫为“VDR”, 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。
VDR是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。
VDR的响应时间为ns级,比气体放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千Pf的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。压敏电阻器简称VDR,是一种对电压敏感的非线性过电压保护半导体元件。
八、lightgbm算法介绍及原理?
LightGBM(Light Gradient Boosting Machine)是一种基于决策树的梯度提升框架,由微软团队开发。它是目前最快的梯度提升框架之一,并在许多机器学习竞赛和实际应用中取得了优秀的表现。
LightGBM的核心算法是基于决策树的梯度提升算法,与传统的梯度提升算法不同的是,它采用了一种称为“GOSS”(Gradient-based One-Side Sampling)的特殊数据采样方法和“EFB”(Exclusive Feature Bundling)的特征捆绑技术来加速训练过程。
具体来说,LightGBM的核心原理包括以下几个方面:
1. 决策树算法:LightGBM采用了基于决策树的梯度提升算法,通过逐步优化每一棵树的叶子节点来提高模型的预测准确率。
2. 数据采样:为了加快训练速度,LightGBM采用了GOSS方法,即仅对梯度大的样本进行采样,而对于梯度小的样本则进行丢弃。这样可以减少样本数量,同时保留对模型训练有较大贡献的样本。
3. 特征捆绑:LightGBM采用了EFB技术,即将多个低维度的特征捆绑成一个高维度的特征。这样可以减少特征数量,减小训练时间和空间复杂度,并且还可以提高模型的准确率。
4. 直方图算法:LightGBM使用直方图算法来存储和计算特征值的梯度和Hessian矩阵,这样可以大大减少内存的使用和计算时间,加快模型训练速度。
总之,LightGBM是一种基于决策树的梯度提升框架,其优化算法包括决策树算法、数据采样、特征捆绑和直方图算法等。这些技术的应用使得LightGBM具有极高的训练速度和预测准确率,成为了机器学习领域中备受关注的算法之一。
九、gps接收器工作原理全面介绍?
1、GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
2、而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
3、GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;
4、P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。
5、它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。
6、后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。
7、当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。
十、GPS原理及应用坐标系统如何定义?
GPS定位系统是指利用卫星,在全球范围内实时进行定位、导航的系统,简称GPS(Global Positioning System)。GPS定位系统功能必须具备GPS终端、传输网络和监控平台三个要素;这三个要素缺一不可;通过这三个要素,可以提供车辆防盗、反劫、行驶路线监控及呼叫指挥等功能。
GPS定位系统是美国第二代卫星导航系统。是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。和子午仪系统一样,GPS定位系统由空间部分、地面监控部分和用户接收机三大部分组成。
GPS定位系统的构成
空间部分(太空部分)
GPS定位系统的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。可见,GPS定位系统卫星部分的作用就是不断地发射导航电文。
- 相关评论
- 我要评论
-